Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce
نویسندگان
چکیده
منابع مشابه
Monte Carlo simulation of photon migration in a cloud computing environment with MapReduce.
Monte Carlo simulation is considered the most reliable method for modeling photon migration in heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte Carlo computations in a massively-parallel cloud computing environment. We ported th...
متن کاملParallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration.
General-purpose computing on graphics processing units (GPGPU) is shown to dramatically increase the speed of Monte Carlo simulations of photon migration. In a standard simulation of time-resolved photon migration in a semi-infinite geometry, the proposed methodology executed on a low-cost graphics processing unit (GPU) is a factor 1000 faster than simulation performed on a single standard proc...
متن کاملMonte Carlo Simulation for Radiotherapy in a Distributed Computing Environment
We show how nowadays it is possible to achieve the goal of accuracy and fast computation response in radiotherapic dosimetry using Monte Carlo methods, together with a distributed computing model. Monte Carlo methods have never been used in clinical practice because, even if they are more accurate than available commercial software, the calculation time needed to accumulate sufficient statistic...
متن کاملA Monte Carlo Simulation of Photon Beam Generated by a Linear Accelerator
ntroduction: Monte Carlo simulation is the most accurate method of simulating radiation transport and predicting doses at different points of interest in radiotherapy. A great advantage of the Monte Carlo method compared to the deterministic methods is the ability to deal accurately with any complex geometry. Its disadvantage is the extremely long computing time r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biomedical Optics
سال: 2011
ISSN: 1083-3668
DOI: 10.1117/1.3656964